One of the most interesting evolutionary hypotheses about brain size is The Expensive Tissue Hypothesis. Back in the early 1990s, scientists were looking to explain how brain size evolves. Brains are exceedingly useful organs; more brain cells allows for more behavioral flexibility, better control of larger bodies, and, of course, intelligence. But if bigger brains were always better, every animal would have them. Thus, scientists reasoned, there must be a downside. The hypothesis suggests that while brains are great and all, their extreme energetic cost limits their size and tempers their growth. When it comes to humans, for example, though our brains are only 2% of our bodies, they take up a whopping 20% of our energy requirements. And you have to wonder: with all that energy being used by our brains, what body parts have paid the price? The hypothesis suggested our guts took the hit, but that intelligence made for more efficient foraging and hunting, thus overcoming the obstacle. This makes sense, but despite over a century of research on the evolution of brain size, there is still controversy, largely stemming from the fact that evidence for the expensive tissue hypothesis is based entirely on between species comparisons and correlations, with no empirical tests.

A unique study published this month in Current Biology has taken a new approach to examining this age old question. Rather than comparing species with bigger brain-to-body ratios to smaller-brained relatives, they exploited the natural variation of brain size in guppies (Poecilia reticulata). Guppies, as it turns out, aren’t as dumb as they look. They’re able to learn, and show rudimentary ability to count. Researchers from Uppsala University in Sweden were able to use their numerical abilities to test whether brain size affects intelligence in these simple fish.

First, the team selected for larger and smaller brains from the natural variation in guppies. They successfully created smarty-pants guppies that had brains about 9% larger than their counterparts through artificial selection. Then, they put them to the test. While the males seemed to gain no benefits from possessing larger noggins, the females with bigger brains were significantly better at the task.