The team is the first to observe and name the neuropeptide, which is composed of short chains of amino acids in the brain of insects and arthropods. The finding may open new possibilities for environmentally friendly pest management, said Yoonseong Park, professor of entomology at Kansas State University.

Park and colleagues recently published their findings in the study, "Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects." It appears in the journal Proceedings of the National Academy of Sciences and was conducted by the Institute of Science and Technology in South Korea; the Slovak Academy of Sciences in Slovakia; Korea University in South Korea; and Kansas State University.

Natalisin is part of insects' and arthropods' peptidergic system—a genetic network that uses small peptides as neurotransmitters to chemically relay messages throughout the body.

"Natalisin is unique to insects and arthropods and has evolved with them," Park said. "It appears to be related to a neuropeptide called tachykinin that is in mammals and invertebrates. While tachykinin is involved with various biological processes, including the control of blood flow in mammals, natalisin is linked to reproductive function and mating behavior in insects and arthropods."

The study looks at natalisin in fruit flies, red flour beetles and silk moths. These insects have four life stages of development—egg, larva, pupa and adult—allowing scientists to observe the insects throughout the entirety of their life cycle to find what natalisin controls.

Kansas State University specializes in red flour beetle research, while South Korea's Institute of Science and Technology and Korea University are leaders in fruit fly research, and Slovakia's Slovak Academy of Sciences in silk moth research, Park said.

The researchers saw that in all three insects, natalisin was expressed in three to four pairs of neurons in the brain.
 

Journal reference: Proceedings of the National Academy of Sciences