Now scientists have used a set of these biomolecules to show one way in which life might have started. They found that these molecular machines, which exist in living cells today, don’t do much on their own. But as soon as they add fatty chemicals, which form a primitive version of a cell membrane, it got the chemicals close enough to react in a highly specific manner.

This form of self-organisation is remarkable, and figuring out how it happens may hold the key to understanding life on earth formed and perhaps how it might form on other planets.

The 1987 Nobel Prize in Chemistry was given to chemists for showing how complex molecules can perform very precise functions. One of the behaviours of these molecules is called self-organisation, where different chemicals come together because of the many forces acting on them and become a molecular machine capable of even more complex tasks. Each living cell is full of these molecular machines.

Pasquale Stano at the University of Roma Tre and his colleagues were interested in using this knowledge to probe the origins of life. To make things simple, they chose an assembly that produces proteins. This assembly consists of 83 different molecules including DNA, which was programmed to produce a special green fluorescent protein (GFP) that could be observed under a confocal microscope.