Neutron stars set to open their heavy hearts

May 31, 2017

By Elizabeth Gibney

For half a century, astronomers and physicists have looked at pulsars and asked ‘how’? How can something the size of a city pack in more mass than the Sun? How does matter arrange itself to achieve such mind-boggling densities? Answering these questions in the laboratory is impossible. But a space mission due to launch on 1 June could answer some of them. For the first time, astronomers will take a detailed peek into the heavy hearts of these mysterious spinning stars.

“It is a big, big step forward to understand the property of the densest matter in the Universe,” says Tetsuo Hatsuda, a theoretical physicist at the RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program in Saitama, Japan. “The state of matter at super high density at the core of the neutron star has been one of the long-standing problems in nuclear physics and astrophysics since the first discovery of the pulsar.”

Pulsars are neutron stars that shoot out beams of radiation as they spin — a feature that enabled their discovery in 1967. Neutron stars are formed from the collapsed remnants of exploded stars. And how matter arranges itself inside them has implications for the way in which particles interact through the fundamental forces, as well as for our understanding of black holes and other cosmic objects.

Continue reading by clicking the name of the source below.

Leave a Reply

View our comment policy.