Coolest science ever headed to the space station

By Adrian Cho

Atomic physicists tend to tinker away on their own, preferably in dark, hushed labs. When Eric Cornell started as a postdoc with Carl Wieman at JILA, an institute run jointly by the National Institute of Standards and Technology and the University of Colorado in Boulder, in 1990 he did his best to transform their second-floor lab into a basement. “We had these beautiful windows that looked out over the mountains,” Cornell says, “and we bought 3-inch-thick Styrofoam and cut it into squares and taped it over them.” The quiet and darkness made it easier to fiddle with the homemade lasers they were using to coax atoms into a new state of matter.

Cornell and Wieman were trying to cool a puff of rubidium gas to within a few billionths of a degree of absolute zero—colder than any place in nature, even the 2.73 kelvins of space. They hoped to produce a long-predicted state of matter called a Bose-Einstein condensate (BEC), in which the atoms shed their individual identities and crowd en masse into a single quantum wave. In 1995, they succeeded—a triumph that earned them a share of the 2001 Nobel Prize in Physics. “We finally unplugged that experiment just 2 years ago,” Cornell says.

Now, Cornell and other physicists are taking their atomic wisps out of seclusion and into space. Early next year, NASA will launch its $70 million Cold Atom Laboratory (CAL) to the International Space Station (ISS). Once in orbit, the fully automated rig will create BECs and do other cold atom experiments, taking advantage of weightlessness to attain record-low temperatures and break ground for ambitious studies of quantum mechanics and gravity. Miniaturization is the key: Experiments that once required a room full of lasers, optical elements, and vacuum systems can now fit in a device the size of an ice chest, with the atoms trapped on the surface of a microchip. The effort will stretch the culture of atomic physicists, forcing them to share a single remote facility, like users of a space telescope.

Continue reading by clicking the name of the source below.

NO COMMENTS

Leave a Reply